Phospholipidomics reveals differences in glycerophosphoserine profiles of hypothermically stored red blood cells and microvesicles
详细信息    查看全文
文摘
During their normal in vivo life cycle erythrocytes (red blood cells, RBCs) undergo biochemical changes leading to membrane microvesiculation and shedding. RBC microvesiculation also occurs in vitro under conditions of blood bank storage, so microvesicles (MVs) accumulate in the storage (preservation) medium over storage time. Considerable effort has been put into gaining a mechanistic understanding of the RBC microvesiculation process, as this is crucial to better understand RBC biology in disease and in health. Additionally, MVs accumulated in stored RBCs have been implicated in transfusion adverse inflammatory reactions, with chloroform extractable compounds, thus lipophilic, known to trigger the effect. However, because thin layer chromatography resolution of RBC and MV lipids has always enabled one to conclude high compositional similarities, in depth analysis of MV lipids has not been extensively pursued. Here we present an orbitrap mass spectrometry (MS) approach to compare the phospholipid composition of RBCs and MVs from leukoreduced, hypothermically (2-6 ¡ãC) stored RBC units. We used shotgun MS analysis and electrospray ionization (ESI) intra-source separation, and demonstrated high similarity of compositional profiles, except for glycerophosphoserines (PS). Contrasting abundances of PS 38:4 and PS 38:1 characterized MV and RBC profiles and suggested that storage-associated microvesiculation possibly involves shedding of specific membrane rafts. This finding indicates that phospholipidomics could likely contribute to a better understanding of the RBC microvesiculation process.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700