Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy
详细信息    查看全文
文摘
The development of photothermal agents (PTAs) with good stability, low toxicity, highly targeting ability and photothermal conversion efficiency is an essential pre-requisite to near-infrared photothermal therapy (PTT) in vivo. Herein, we report the readily available PEGylated Fe@Fe3O4 NPs, which possess triple functional properties in one entity – targeting, PTT, and imaging. Compared to Au nanorods, they exhibit comparable photothermal conversion efficiency (∼20%), and much higher photothermal stability. They also show a high magnetization value and transverse relaxivity (∼156 mm−1 s−1), which should be applied for magnetic targeting MRI. With the Nd-Fe-B magnet (0.5 T) beside the tumour for 12 h on the xenograft HeLa tumour model, PEGylated Fe@Fe3O4 NPs exhibit an obvious accumulation. In tumour, the intensity of MRI signal is ∼ three folds and the increased temperature is ∼ two times than those without magnetic targeting, indicating the good magnetic targeting ability. Notably, the intrinsic high photothermal conversion efficiency and selective magnetic targeting effect of the NPs in tumour play synergistically in highly efficient ablation of cancer cells in vitro and in vivo.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700