Cytochrome P450 Taxadiene 5α-Hydroxylase, a Mechanistically Unusual Monooxygenase Catalyzing the First Oxygenation Step of Taxol Biosynthesis
详细信息    查看全文
文摘
The first oxygenation step in the biosynthesis of the anticancer drug taxol in Taxus species is the cytochrome P450-mediated hydroxylation (with double bond migration) of the diterpene olefin precursor taxa-4(5),11(12)-diene to taxa-4(20),11(12)-dien-5α-ol. A homology-based cloning strategy, employing an induced Taxus cell library, yielded a cDNA encoding taxadiene 5α-hydroxylase, which was functionally expressed in yeast and insect cells. The recombinant enzyme was characterized and shown to efficiently utilize both taxa-4(5),11(12)-diene and taxa-4(20),11(12)-diene (as an adventitious substrate) to synthesize taxa-4(20),11(12)-dien-5α-ol. This hydroxylase resembles, in sequence and properties, other cytochrome P450 oxygenases of taxol biosynthesis. The utilization of both taxadiene isomers in the formation of taxa-4(20),11(12)-dien-5α-ol is novel, suggesting a reaction mechanism involving promiscuous radical abstraction with selective oxygen insertion rather than epoxidation of the C4,C5-alkene of the natural substrate and allylic rearrangement of the resulting taxa-11(12)-en-4,5epoxide.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700