Surface oxidation kinetics of Cr film by Nd-YAG laser
详细信息    查看全文
文摘
Surface microstructures of Cr films by Nd-YAG laser oxidation and annealing oxidation were studied by SEM, FESEM, AFM and XRD. Cr films with different grain sizes varying from 30 to 200nm were obtained with the change of laser parameters. The calculated activation energy is of 1.13eV and it was less than the lattice diffusion activation energy. Fick's law and average field method was applied to simulate the laser oxidation kinetics in Cr films. The differential form of homogeneous grain growth formula at equivalent constant temperature was used to establish laser oxidation kinetics. The inverse logarithm relation between oxidation rate and laser acting time was observed when the grain sizes of film were in 100–200nm and it complied with Wagner theory and the parabola kinetics curve. The oxidation kinetics complied with Carbrea–Mott theory when the oxide film grain sizes were less than 100nm. Cabrera–Mott oxidation kinetics was applied to not only the grain sizes within 10nm, but also the grain sizes up to 100nm. This result filled up the blank in the oxidation kinetics with grains sized of 10–100nm. These results from the laser enhanced desorption which could reach rather deeper layer in the film under laser oxidation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700