Adaptive local iterative filtering for signal decomposition and instantaneous frequency analysis
详细信息    查看全文
文摘
Time–frequency analysis for non-linear and non-stationary signals is extraordinarily challenging. To capture features in these signals, it is necessary for the analysis methods to be local, adaptive and stable. In recent years, decomposition based analysis methods, such as the empirical mode decomposition (EMD) technique pioneered by Huang et al., were developed by different research groups. These methods decompose a signal into a finite number of components on which the time–frequency analysis can be applied more effectively.

In this paper we consider the Iterative Filtering (IF) approach as an alternative to EMD. We provide sufficient conditions on the filters that ensure the convergence of IF applied to any L2 signal. Then we propose a new technique, the Adaptive Local Iterative Filtering (ALIF) method, which uses the IF strategy together with an adaptive and data driven filter length selection to achieve the decomposition. Furthermore we design smooth filters with compact support from solutions of Fokker–Planck equations (FP filters) that can be used within both IF and ALIF methods. These filters fulfill the derived sufficient conditions for the convergence of the IF algorithm. Numerical examples are given to demonstrate the performance and stability of IF and ALIF techniques with FP filters. In addition, in order to have a complete and truly local analysis toolbox for non-linear and non-stationary signals, we propose new definitions for the instantaneous frequency and phase which depend exclusively on local properties of a signal.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700