HPLC-based monitoring of products formed from hydroethidine-based fluorogenic probes 鈥?The ultimate approach for intra- and extracellular superoxide detection
详细信息    查看全文
文摘

Background

Nearly ten years ago, we demonstrated that superoxide radical anion () reacts with the hydroethidine dye (HE, also known as dihydroethidium, DHE) to form a diagnostic marker product, 2-hydroxyethidium (2-OH-E+). This particular product is not derived from reacting HE with other biologically relevant oxidants (hydrogen peroxide, hydroxyl radical, or peroxynitrite). This discovery negated the longstanding view that reacts with HE to form the other oxidation product, ethidium (E+). It became clear that due to the overlapping fluorescence spectra of E+ and 2-OH-E+, fluorescence-based techniques using the 鈥渞ed fluorescence鈥?are not suitable for detecting and measuring in cells using HE or other structurally analogous fluorogenic probes (MitoSOXTM Red or hydropropidine). However, using HPLC-based assays, 2-OH-E+ and analogous hydroxylated products can be easily detected and quickly separated from other oxidation products.

Scope of review

The principles discussed in this chapter are generally applicable in free radical biology and medicine, redox biology, and clinical and translational research. The assays developed here could be used to discover new and targeted inhibitors for various superoxide-producing enzymes, including NADPH oxidase (NOX) isoforms.

Major conclusions

HPLC-based approaches using site-specific HE-based fluorogenic probes are eminently suitable for monitoring in intra- and extracellular compartments and in mitochondria. The use of fluorescence-microscopic methods should be avoided because of spectral overlapping characteristics of -derived marker product and other, non-specific oxidized fluorescent products formed from these probes.

General significance

Methodologies and site-specific fluorescent probes described in this review can be suitably employed to delineate oxy radical dependent mechanisms in cells under physiological and pathological conditions. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700