New evidence for cofactor’s amino group function in thiamin catalysis by transketolase
详细信息    查看全文
文摘
Transketolase from Saccharomyces cerevisiae exhibits a rarely reported activity with a methylated analogue of the native cofactor, 4′-methylamino-thiamin diphosphate. We demonstrated the kinetic stability of the dihydroxyethyl carbanion/enamine intermediate to be dependent on the functionality of the 4′-aminopyrimidine moiety of thiamin diphosphate [R. Golbik, L.E. Meshalkina, T. Sandalova, K. Tittmann, E. Fiedler, H. Neef, S. König, R. Kluger, G.A. Kochetov, G. Schneider, G. Hübner, Effect of coenzyme modification on the structural and catalytic properties of wild-type transketolase and of the variant E418A from Saccharomyces cerevisae, FEBS J. (2005) 272 1326–1342]. This paper extends these investigations of the function of the coenzyme’s aminopyrimidine in transketolase catalysis exemplified for the 4′-monomethylamino-thiamin diphosphate analogue. Here, we report near UV circular dichroism data and NMR-based analysis of reaction intermediates that give evidence for a strong destabilisation of the carbanion/enamine of DHE-4’-monomethylamino-thiamin diphosphate on the enzyme. A new negative band in near UV circular dichroism arising during turnover is attributed to the conjugate acid of the carbanion/enamine intermediate, an assignment additionally corroborated by 1H NMR-based intermediate analysis. As opposed to the kinetically stabilized carbanion/enamine intermediate in transketolase when reconstituted with the native cofactor, DHE-4′-monomethylamino-thiamin diphosphate is rapidly released from the active centers during turnover and accumulates in the medium on a preparative scale.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700