Effects of rare earth ion modifications on the photoelectrochemical properties of ZnO-based dye-sensitized solar cells
详细信息    查看全文
文摘
Dye-sensitized solar cells (DSSCs) were fabricated by using porous ZnO film electrodes derived from home-made ZnO nanoparticles. Electrochemical impedance spectroscopy and open-circuit voltage decay curve measurements were performed to investigate the photoelectrochemical characteristics of the ZnO films modified with different rare earth (La, Ce, Nd, Sm, and Gd) ions. The experimental results indicate that the rare earth oxides covered on the electrode surfaces can form energy barrier and maintain a lower charge recombination probability, and some rare earth ion modifications can passivate the surface states of ZnO electrode. Among these rare earth ions tested, the Nd-, Sm- and Gd-ion modifications can obviously enhance the open-circuit photovoltage and fill factor of the ZnO-based solar cell; whereas the La-, Ce-, Nd-, and Sm-ion modificaions lead to a decreased short-circuit photocurrent. The optimal conversion efficiency is obtained from the Gd-ion modified ZnO-based cells, with a 44.5 % improvement in the efficiency as compared to the unmodified one, indicating this rare earth ion modification is promising in the ZnO-based solar cell.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700