There-dimensional porous carbon network encapsulated SnO2 quantum dots as anode materials for high-rate lithium ion batteries
详细信息    查看全文
文摘
SnO2 quantum dots have attracted enormous interest, since they have been shown to effectively minimize the volume change stress, improve the anode kinetic and shorten the lithium ion migration distance when used as anode materials for lithium ion battery. In this work, we report a facile strategy to fabricate nanostructure with homogenous SnO2 quantum dots anchored on three-dimensional (3D) nitrogen and sulfur dual-doped porous carbon (NSGC@SnO2). Characterization results show that the obtained SnO2 quantum dots have an average critical size of 3–5 nm and uniformly encapsulated in the porous of NSGC matrix. The as-designed nanostructure can effectively avoid the aggregation of SnO2 quantum dots as well as accommodate the mechanical stress induced by the volume change of SnO2 quantum dots and thus maintain the structure integrity of the electrode. As a result, the obtained NSGC@SnO2 composite exhibits a specific reversible capacity as high as 1118 mAh g−1 at a current of 200 mA g−1 after 100 cycles along with a high coulombic efficiency of 98% and excellent rate capability.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700