(7R,8S)-9-Acetyl-dehydrodiconiferyl alcohol inhibits inflammation and migration in lipopolysaccharide-stimulated macrophages
详细信息    查看全文
文摘
(7R, 8S)-9-Acetyl-dehydrodiconiferyl alcohol (ADDA), a novel lignan compound isolated from Clematis armandii Franch (Ranunculaceae) stems, has been found to exert potential anti-inflammatory activities in vitro.

Purpose

To investigate the pharmacological effects and molecular mechanisms of ADDA on lipopolysaccharide (LPS)-induced activation and migration of macrophages.

Study design/methods

Macrophages were stimulated with LPS in the presence or absence of ADDA. Expression of inflammatory mediators, including cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and nitric oxide (NO) were measured by Western blot and commercial NO detection kit. Cellular viability and chemotactic properties of macrophages were investigated using MTT and transwell migration assays. The activation and expression of mitogen activated protein kinases, nuclear factor-κB (NF-κB), protein kinase B (Akt), Src, and focal adhesion kinase (FAK) were analyzed by Western blot.

Results

Non-toxic concentrations (12.5–50 µM) of ADDA concentration-dependently inhibited expression/release of inflammatory mediators (COX-2, iNOS, and NO), suppressed Akt and c-jun N-terminal kinase 1/2 (JNK) phosphorylation, and NF-κB activation in LPS-stimulated macrophages. In addition, ADDA blocked LPS-mediated macrophage migration and this was associated with inhibition of LPS-induced Src and FAK phosphorylation as well as Src expression in a concentration dependent manner. Notably, the inhibitory effects of ADDA on iNOS, NO, and Src could be mimicked by a Src inhibitor PP2 or an iNOS inhibitor l-NMMA.

Conclusion

Our results suggested that ADDA attenuated LPS-induced inflammatory responses in macrophages and cell migration, at least in part, through inhibition of NF-κB activation and modulation of iNOS/Src/FAK axis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700