Reduced order optimization for model predictive control using principal control moves
详细信息    查看全文
文摘
In order to reduce the computational complexity of model predictive control (MPC) a proper input signal parametrization is proposed in this paper which significantly reduces the number of decision variables. This parametrization can be based on either measured data from closed-loop operation or simulation data. The snapshots of representative time domain data for all manipulated variables are projected on an orthonormal basis by a Karhunen-Loeve transformation. These significant features (termed principal control moves, PCM) can be reduced utilizing an analytic criterion for performance degradation. Furthermore, a stability analysis of the proposed method is given. Considerations on the identification of the PCM are made and another criterion is given for a sufficient selection of PCM. It is shown by an example of an industrial drying process that a strong reduction in the order of the optimization is possible while retaining a high performance level.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700