Retrograde axonal tracing using manganese enhanced magnetic resonance imaging
详细信息    查看全文
文摘
Manganese-enhanced magnetic resonance imaging (MEMRI) was used to investigate retrograde axonal tracing in the rat sciatic nerve model to assess its potential to examine peripheral nerve injury. The right sciatic nerve was exposed and crushed. After each recovery period, the distal part of the right sciatic nerve was injected with manganese (400 mM, 15 μl). After allowing 3 days for manganese transport the animals were subsequently scanned to visualize the sciatic nerve and its corresponding spinal cord and dorsal root ganglia with T1-weighted MRI. Thirty-four animals were randomly divided into 4 experimental groups according to their recovery period post-crush injury: 3 days (n = 6), 2 weeks (n = 6), 4 weeks (n = 6) and 12 weeks (n = 6); and two control groups: a non-crushed group (n = 6) and a nerve cut group (n = 4). In the no-injury group, the right sciatic nerve tract including its corresponding spinal cord and dorsal root ganglia showed significant T1 signal enhancement. In the animals with crush injury, the MR signal intensity was significantly reduced proximal to the injured site but gradually reappeared with increasing recovery period. The signal intensity of the sciatic tract was compared to the results of behavioral functional testing, retrograde axonal tracing with neural tracer fluorogold and histomorphometric analysis of the distal nerve. Significant correlations were observed between the MR signal intensity and the behavioral functional test (r = 0.50, p < 0.05), and the retrograde axonal tracing (r = 0.88; p < 0.05). Retrograde neuronal tract tracing with MEMRI can be used for the assessment of peripheral nerve damage and regeneration.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700