Clinical validation of a noninvasive prenatal test for genomewide detection of fetal copy number variants
详细信息    查看全文
文摘
Current cell-free DNA assessment of fetal chromosomes does not analyze and report on all chromosomes. Hence, a significant proportion of fetal chromosomal abnormalities are not detectable by current noninvasive methods. Here we report the clinical validation of a novel noninvasive prenatal test (NIPT) designed to detect genomewide gains and losses of chromosomal material ≥7 Mb and losses associated with specific deletions <7 Mb.

Objective

The objective of this study is to provide a clinical validation of the sensitivity and specificity of a novel NIPT for detection of genomewide abnormalities.

Study Design

This retrospective, blinded study included maternal plasma collected from 1222 study subjects with pregnancies at increased risk for fetal chromosomal abnormalities that were assessed for trisomy 21 (T21), trisomy 18 (T18), trisomy 13 (T13), sex chromosome aneuploidies (SCAs), fetal sex, genomewide copy number variants (CNVs) ≥7 Mb, and select deletions <7 Mb. Performance was assessed by comparing test results with findings from G-band karyotyping, microarray data, or high coverage sequencing.

Results

Clinical sensitivity within this study was determined to be 100% for T21 (95% confidence interval [CI], 94.6–100%), T18 (95% CI, 84.4–100%), T13 (95% CI, 74.7–100%), and SCAs (95% CI, 84–100%), and 97.7% for genomewide CNVs (95% CI, 86.2–99.9%). Clinical specificity within this study was determined to be 100% for T21 (95% CI, 99.6–100%), T18 (95% CI, 99.6–100%), and T13 (95% CI, 99.6–100%), and 99.9% for SCAs and CNVs (95% CI, 99.4–100% for both). Fetal sex classification had an accuracy of 99.6% (95% CI, 98.9–99.8%).

Conclusion

This study has demonstrated that genomewide NIPT for fetal chromosomal abnormalities can provide high resolution, sensitive, and specific detection of a wide range of subchromosomal and whole chromosomal abnormalities that were previously only detectable by invasive karyotype analysis. In some instances, this NIPT also provided additional clarification about the origin of genetic material that had not been identified by invasive karyotype analysis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700