BeiDou satellite’s differential code biases estimation based on uncombined precise point positioning with triple-frequency observable
详细信息    查看全文
文摘
The differential code bias (DCB) of BeiDou satellite is an important topic to make better use of BeiDou system (BDS) for many practical applications. This paper proposes a new method to estimate the BDS satellite DCBs based on triple-frequency uncombined precise point positioning (UPPP). A general model of both triple-frequency UPPP and Geometry-Free linear combination of Phase-Smoothed Range (GFPSR) is presented, in which, the ionospheric observable and the combination of triple-frequency satellite and receiver DCBs (TF-SRDCBs) are derived. Then the satellite and receiver DCBs (SRDCBs) are estimated together with the ionospheric delay that is modeled at each individual station in a weighted least-squares estimator, and the satellite DCBs are determined by introducing the zero-mean condition of all available BDS satellites. To validate the new method, 90 day’s real tracking GNSS data (from January to March in 2014) collected from 9 Multi-GNSS Experiment (MGEX) stations (equipped with Trimble NETR9 receiver) is used, and the BDS satellite DCB products from German Aerospace Center (DLR) are taken as reference values for comparison. Results show that the proposed method is able to precisely estimate BDS satellite DCBs: (1) the mean value of the day-to-day scattering for all available BDS satellites is about 0.24 ns, which is reduced in average by 23% when compared with the results derived by only GFPSR. Moreover, the mean value of the day-to-day scattering of IGSO satellites is lower than that of GEO and MEO satellites; (2) the mean value of RMS of the difference with respect to DLR DCB products is about 0.39 ns, which is improved by an average of 11% when compared with the results derived by only GFPSR. Besides, the RMS of IGSO and MEO satellites is at the same level which is better than that of GEO satellites.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700