Altered mitochondrial biogenesis and its fusion gene expression is involved in the high-altitude adaptation of rat lung
详细信息    查看全文
文摘
Intermittent hypobaric hypoxia-induced preconditioning (IHH-PC) of rat favored the adaption of lungs to severe HH conditions, possibly through stabilization of mitochondrial function. This is based on the data generated on regulatory coordination of nuclear DNA-encoded mitochondrial biogenesis; dynamics, and mitochondrial DNA (mtDNA)-encoded oxidative phosphorylation (mtOXPHOS) genes expression. At 16th day after start of IHH-PC (equivalent to 5000 m, 6 h/d, 2 w of treatment), rats were exposed to severe HH stimulation at 9142 m for 6 h. The IHH-PC significantly counteracted the HH-induced effect of increased lung: water content; tissue damage; and oxidant injury. Further, IHH-PC significantly increased the mitochondrial number, mtDNA content and mtOXPHOS complex activity in the lung tissues. This observation is due to an increased expression of genes involved in mitochondrial biogenesis (PGC-1伪, ERR伪, NRF1, NRF2 and TFAM), fusion (Mfn1 and Mfn2) and mtOXPHOS. Thus, the regulatory pathway formed by PGC-1伪/ERR伪/Mfn2 axes is required for the mitochondrial adaptation provoked by IHH-PC regimen to counteract subsequent HH stress.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700