Stability analysis and finite volume element discretization for delay-driven spatio-temporal patterns in a predator-prey model
详细信息    查看全文
文摘
Time delay is an essential ingredient of spatio-temporal predator–prey models since the reproduction of the predator population after predating the prey will not be instantaneous, but is mediated by a constant time lag accounting for the gestation of predators. In this paper we study a predator–prey reaction–diffusion system with time delay, where a stability analysis involving Hopf bifurcations with respect to the delay parameter and simulations produced by a new numerical method reveal how this delay affects the formation of spatial patterns in the distribution of the species. In particular, it turns out that when the carrying capacity of the prey is large and whenever the delay exceeds a critical value, the reaction–diffusion system admits a limit cycle due to the Hopf bifurcation. This limit cycle induces the spatio-temporal pattern. The proposed discretization consists of a finite volume element (FVE) method combined with a Runge–Kutta scheme.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700