Cleavable carbamate linkers for controlled protein delivery from hydrogels
详细信息    查看全文
文摘
The reversible attachment of proteins to polymers is one potential strategy to control protein release from hydrogels. In this study, we report the reversible attachment of lysozyme to poly(ethylene glycol) (PEG) by degradable carbamate linkers. Phenyl groups with different substituents were used to control the rate of carbamate hydrolysis and the resulting protein release. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed modification with 1–3 PEG chains per lysozyme molecule. Protein PEGylation and PEG chain elimination occurred without changes in secondary protein structure, as demonstrated by circular dichroism spectroscopy. The lytic activity of lysozyme was restored to 73.4 ± 1.7%–92.5 ± 1.2% during PEG chain elimination. Attached PEG chains were eliminated within 24 h to 28 days, depending on the used linker molecule. When formulated into hydrogels, a maximum of about 60% of the initial dose was released within 7 days to 21 days. Linker elimination occurs ‘traceless’, so that the protein is released in its native, unmodified form. Altogether, we believe that tethering proteins by degradable carbamate linkers is a promising strategy to control their release from hydrogels.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700