Ion–ion interactions of LiPF6 and LiBF4 in propylene carbonate solutions
详细信息    查看全文
文摘
Self-diffusion coefficients of Li+ DLi+, PF6 DPF6 and solvent propylene carbonate (PC) DPC in LiPF6−PC solutions were determined at 298 K by the pulse gradient spin echo (PGSE) NMR technique over the salt concentration range of 0.1–3.0 M (M = mol dm– 3). The order of the diffusion coefficients was found to be DLi+ < DPF6 < DPC over the concentration range examined, and they were monotonically decreased with increasing the salt concentration. Haven ratio Λ/ΛNMR, where Λ and ΛNMR represent the ionic conductivity measured electrochemically and that estimated via the Nernst-Einstein equation using the diffusion coefficient, respectively, was evaluated as the measure of the ion–ion interaction in the LiPF6–PC solutions. Though Λ/ΛNMR values for LiPF6-solutions decrease with increasing the salt concentration, they were greater than those for LiBF4–PC solutions over the whole concentration range examined, which indicates that the ion pair formation ability of PF6 ion is weaker than that of the BF4 ion. The smaller value of the ionic conductivity for the highly concentrated LiPF6–PC solution (above 2.0 M) than that of the LiBF4-solutions can be attributed to the more rapidly increased viscosity relative to the LiBF4-solution. Classic molecular dynamics (MD) simulations for the respective LiPF6 and LiBF4-solution of 0.5 and 1.0 M were also carried out based on the effective pair potentials. Diffusion coefficients, ionic conductivity and Haven ratio for these solutions were calculated from MD trajectories, and they qualitatively agree with those evaluated by experiments. Pair correlation functions gLiO(r) (for Li+–O (PC) pair) and gLiPF6(r) (for Li+–PF6 pair) or gLiBF4(r) (for Li+–BF4 pair) revealed that the lithium ion weakly forms the contact ion pairs with PF6, whilst strongly with BF4, which supports the present experimental results. Moreover, the simulation results show that both anions in the contact ion pairs predominantly take the monodentate form, which is in contrast to the multidentate coordination predicted by ab initio calculation in gas phase.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700