Microstructural stability of 11Cr ODS steel
详细信息    查看全文
文摘
Aiming at further improvement of high-temperature oxidation and corrosion resistance, 11CrODS steel with martensitic base structure has been previously developed, as a candidate fuel cladding material for 4th generation advanced nuclear reactors. In this study, the microstructure of 11CrODS steel was characterized by means of EBSD and nanoindentation hardness measurement. The continuous cooling transformation (CCT) diagram was constructed. Upper critical cooling rate, which is minimum cooling rate necessary to form martensitic structure, was derived to be 60 °C/min (3600 °C/h). In contrast, lower critical cooling rate preventing from martensite formation, was derived to be 10 °C/min (600 °C/h). An area fraction of so called residual ferrite was estimated by image processing of EBSD-IQ map to be 21% of the total area. This fraction of the residual ferrite in 11CrODS steel was evaluated by considering the driving force for α to γ reverse transformation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700