A comparison of the delayed outward potassium current between the nucleus ambiguus and hippocampus: sensitivity to paeonol
详细信息    查看全文
文摘
Whole-cell patch-clamp recordings investigated the electrophysiological effects of 2′-hydroxy-4′-methoxyacetophenone (paeonol), one of the major components of Moutan Cortex, in hippocampal CA1 neurons and nucleus ambiguus (NA) neurons from neonatal rats as well as in lung epithelial H1355 cells expressing Kv2.1 or Kv1.2. Extracellular application of paeonol at 100 μM did not significantly affect the spontaneous action potential frequency, whereas paeonol at 300 μM increased the frequency of spontaneous action potentials in hippocampal CA1 neurons. Paeonol (300 μM) significantly decreased the tetraethylammonium-sensitive outward current in hippocampal CA1 neurons, but had no effect upon the fast-inactivating potassium current (IA). Extracellular application of paeonol at 300 μM did not affect action potentials or the delayed outward currents in NA neurons. Paeonol (100 μM) reduced the Kv2.1 current in H1355 cells, but not the Kv1.2 current. The inhibitor of Kv2, guangxitoxin-1E, reduced the delayed outward potassium currents in hippocampal neurons, but had only minimal effects in NA neurons. We demonstrated that paeonol decreased the delayed outward current and increased excitability in hippocampal CA1 neurons, whereas these effects were not observed in NA neurons. These effects may be associated with the inhibitory effects on Kv2.1 currents.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700