Investigation of magnetic and transport properties of PrCa(MnCo)O prepared by solid state process
详细信息    查看全文
文摘
Magnetic, magnetocaloric and electrical properties in distorted orthorhombic system Pr0.7Ca0.3Mn0.98Co0.02O3 has been studied. Complex impedance analysis confirms the contribution of grain boundary on the conduction process. The latter is dominated by thermally activated hopping mechanism. The sample exhibits two relaxations phenomena. Only one process persists at higher temperatures. Conductivity analysis indicates that the investigated compound exhibits a semiconductor behavior. The material reveals a dielectric transition and the experimental results are well fitted by Curie-Weiss law. The magnetic measurements show a clear paramagnetic–ferromagnetic transition with a large magnetic entropy change over a wide range of temperature. Furthermore, Banerjee's criteria and Landau theory of phase transitions are also studied to access magnetic ordering in the sample. A maximum magnetic entropy change increases from 0.5 to 2.18 J kg−1 K−1 when magnetic field rises from 1 T to 5 T. For the higher applied magnetic field, the material exhibits a high relative cooling power RCP=268.14 J/kg with a large temperature full-width at half maximum δTFWHM=123 K.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700