Restriction of spontaneous and prednisolone-induced leptin production to dedifferentiated state in human hip OA chondrocytes: role of Smad1 and β-catenin activation
详细信息    查看全文
文摘
The aetiology of OA is not fully understood although several adipokines such as leptin are known mediators of disease progression. Since leptin levels were increased in synovial fluid compared to serum in OA patients, it was suggested that joint cells themselves could produce leptin. However, exact mechanisms underlying leptin production by chondrocytes are poorly understood. Nevertheless, prednisolone, although displaying powerful anti-inflammatory properties has been recently reported to be potent stimulator of leptin and its receptor in OA synovial fibroblasts. Therefore, we investigated, in vitro, spontaneous and prednisolone-induced leptin production in OA chondrocytes, focusing on transforming growth factor-β (TGFβ) and Wnt/β-catenin pathways.

Design

We used an in vitro dedifferentiation model, comparing human freshly isolated hip OA chondrocytes cultivated in monolayer during 1 day (type II, COL2A1 +; type X, COL10A1 + and type I collagen, COL1A1 −) or 14 days (COL2A1 −; COL10A1 − and COL1A1+).

Results

Leptin expression was not detected in day1 OA chondrocytes whereas day14 OA chondrocytes produced leptin, significantly increased with prednisolone. Activin receptor-like kinase 1 (ALK1)/ALK5 ratio was shifted during dedifferentiation, from high ALK5 and phospho (p)-Smad2 expression at day1 to high ALK1, endoglin and p-Smad1/5 expression at day14. Moreover, inactive glycogen synthase kinase 3 (GSK3) and active β-catenin were only found in dedifferentiated OA chondrocytes. Smad1 and β-catenin but not endoglin stable lentiviral silencing led to a significant decrease in leptin production by dedifferentiated OA chondrocytes.

Conclusions

Only dedifferentiated OA chondrocytes produced leptin. Prednisolone markedly enhanced leptin production, which involved Smad1 and β-catenin activation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700