Targeted protein identification, quantification and reporting for high-resolution nanoflow targeted peptide monitoring
详细信息    查看全文
文摘
Mass spectrometry-based targeted proteomic assays are experiencing a surge in awareness due to the diverse possibilities arising from the re-application of traditional LC-SRM technology. The FDA-approved quantitative LC-SRM-pipeline in drug discovery motivates the use to quantitatively validate putative proteomic biomarkers. However, complexity of biological specimens bears a huge challenge to identify, in parallel, specific peptides and proteins of interest from large biomarker candidate lists. Methods have been devised to increase scan speeds, improve detection specificity and verify quantitative SRM-features. In contrast, high-resolution mass spectrometers could be used to improve reliability and precision of targeted proteomics assays. Here, we present a new method for identifying, quantifying and reporting peptides in high-resolution targeted proteomics experiments performed on an orbitrap hybrid instrument using stable isotope-labeled internal reference peptides. This high precision targeted peptide monitoring (TPM) method has unique advantages over existing techniques, including the need to only detect the most abundant product ion of a given target for confident peptide identification using a scoring function that evaluates assay performance based on 1) m/z-mass accuracy, 2) retention time accuracy of observed species relative to prediction, and 3) retention time accuracy relative to internal reference peptides. Further, we show management of multiplexed precision TPM-assays using sentinel peptide standards.

This article is part of a Special Issue entitled: From protein structures to clinical applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700