Removal of hardness agents, calcium and magnesium, by natural and alkaline modified pumice stones in single and binary systems
详细信息    查看全文
文摘
Natural and alkaline modified pumice stones were used for the adsorption of water hardening cations, Ca2+ and Mg2+. The adsorbents were characterized using XRF, XRD, SEM and FTIR instrumental techniques. At equilibrium time and for 150 mg/L of a given cation, removal efficiencies were 83 % and 94 % for calcium and 48 % and 73 % for magnesium for raw and modified pumices, respectively. The optimal pH for raw and modified pumices were found to be 6.0, leading to the removal of 79 and 96 % of calcium and 51 and 93 % of magnesium by 10 g/L of raw and modified pumice adsorbents, respectively. Maximum adsorption capacities were 57.27 and 62.34 mg/g for Ca2+ and 44.53 and 56.11 mg/g for Mg2+ on the raw and modified pumices, respectively. Ca2+ and Mg2+ adsorption capacities of the pumice adsorbents decreased in the presence of competing cations. Less than 300 min were needed to achieve 99 and 92 % desorption of the adsorbed Ca2+ and 100 and 89 % of the adsorbed Mg2+ from the natural and modified pumices, respectively. After treating synthetic water solution simulating an actual water stream with the alkali-modified pumice, total hardness of the treated sample met the required standard for drinking water, namely below 300 mg/L of CaCO3 (297.5 mg/L). The studied pumice adsorbents, and especially the treated pumice, can be therefore considered as promising low cost adsorbents, suitable for the removal of hardness ions from drinking water.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700