Verification and validation of the MCNPX-PoliMi code for simulations of neutron multiplicity counting systems
详细信息    查看全文
文摘
Neutron coincidence counting is widely used in nuclear safeguards. Simulations of these systems can be performed using Monte Carlo codes such as MCNPX to aid in calibration or measurement design. However, the MCNPX coincidence-counting routines treat particle histories individually, therefore the dead time of the acquisition electronics is not treated. The MCNPX-PoliMi code provides the ability to model detailed effects such as data-acquisition electronics and system dead times. A specialized post-processing code has been developed to interpret the collision-log file and determine the response of a 3He multiplicity counter. The MCNPX-PoliMi simulation provides the full neutron multiplicity distribution measured by the 3He tubes. This distribution is used to compute the singles, doubles, and triples rates which are the quantities used to determine 235U mass. MCNPX-PoliMi has previously been validated with passive multiplicity measurements. In this study, a detailed analysis of the measurement system operating in active mode is presented for uranium-oxide standards ranging from 0.5 to 4.0 kg with a Canberra JCC-51 active well coincidence counter. MCNPX-PoliMi calculations are also compared with MCNPX. The two codes agree to within 1 % for the cases with negligible dead times. The simulations are validated with measurements performed at the Y-12 National Security Complex.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700