Energy yields from chemolithotrophic metabolisms in igneous basement of the Juan de Fuca ridge flank system
详细信息    查看全文
文摘
The permeable rocks of the upper oceanic basement contain seawater-sourced fluids estimated to be ~ 2 % of the global ocean volume. This represents a very large potential subsurface biosphere supported by chemosynthesis. Recent collection of high integrity samples of basement fluid from the sedimented young basaltic basement on the Juan de Fuca Ridge flanks, off the coasts of Vancouver Island (Canada) and Washington (USA), and subsequent chemical analyses permit numerical modeling of metabolic redox reaction energetics. Here, values of Gibbs free energy for potential chemolithotrophic net reactions were calculated in basement fluid and in zones where basement fluid and entrained seawater may mix; the energy yields are reported both on a per mole electrons transferred and on a per kg of basement fluid basis. In pure basement fluid, energy yields from the anaerobic respiration processes investigated are anemic, releasing < 0.3 J/kg basement fluid for all reactions except methane oxidation by ferric iron, which releases ~ 0.6 J/kg basement fluid. In mixed solutions, aerobic oxidation of hydrogen, methane, and sulfide is the most exergonic on a per mole electron basis. Per kg of basement fluid, the aerobic oxidation of ammonia is by far the most exergonic at low temperature and high seawater:basement fluid ratio, decreasing by more than two orders of magnitude at the highest temperature (63 ¡ãC) and lowest seawater:basement fluid ratio investigated. Compared with mixing zones in deep-sea hydrothermal systems, oceanic basement aquifers appear to be very low energy systems, but because of their expanse, may support what has been labeled the ¡®starving majority¡¯.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700