Differential roles of PKCα and PKC in controlling the gene expression of Nox4 in human endothelial cells
详细信息    查看全文
文摘
NADPH oxidases are major sources of superoxide in the vascular wall. This study investigates the role of protein kinase C (PKC) in regulating gene expression of NADPH oxidases. Treatment of human umbilical vein endothelial cells (HUVEC) and HUVEC-derived EA.hy 926 endothelial cells with phorbol 12-myristate 13-acetate (PMA) or phorbol 12,13-dibutyrate led to a PKC-dependent biphasic expression of the gp91phox homolog Nox4. A downregulation of Nox4 was observed at 6 h and an upregulation at 48 h after phorbol ester treatment. The early Nox4 downregulation was associated with a reduced superoxide production, whereas the late Nox4 upregulation was accompanied by a clear enhancement of superoxide. PMA activated the PKC isoforms and in HUVEC and EA.hy 926 cells. Knockdown of PKC by siRNA prevented the early downregulation of Nox4, whereas knockdown of PKC selectively abolished the late Nox4 upregulation. Vascular endothelial growth factor (VEGF), which activates PKC but not PKC in HUVEC, increased Nox4 expression without the initial downregulation. VEGF-induced Nox4 upregulation was associated with an enhanced proliferation and angiogenesis of HUVEC. Both effects could be reduced by inhibition of NADPH oxidase. Thus, a selective inhibition/knockdown of PKC may represent a novel therapeutic strategy for vascular disease.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700