Selective encapsulation of hemoproteins from mammalian cells using mesoporous metal oxide nanoparticles
详细信息    查看全文
文摘
A key requirement in successful protein encapsulation is the fabrication of selective protein supercaptors that are not impeded by the physical shape and three-dimensional hydrodynamics of the protein, exhibit minimal clogging effect but with high protein retention, and with uniformly sized adsorbent pores. We report a novel nanomagnet-selective supercaptor approach in the encapsulation of hemoprotein from mammalian cells using mesoporous metal oxide nanoparticles (NPs). Different morphologies of mesoporous NiO and Fe3O4 NPs were fabricated. Among these nanoadsorbents, NiO nanoroses (NRs) had higher loading capacity of hemoprotein than NiO nanospheres (NSs) and nanoplatelets (NPLs), or even superparamagnetic Fe3O4 NPs. The key finding of this study was that mesoporous NiO nanomagnet supercaptors show exceptional encapsulation and selective separation of high-concentration Hb from human blood. In this induced-fit separation model, in addition to the heme group distributions and protein-carrier binding energy, the morphology and magnetic properties of NiO NPs had a key function in broadening the controlled immobilization affinity and selectivity of hemoproteins. In addition, thermodynamics, kinetics, and theoretical studies were carried out to investigate the optimal performance of protein adsorption.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700