Orthogonal simulated annealing for multiobjective optimization
详细信息    查看全文
文摘
The paper proposes a new simulated annealing (SA) based multiobjective optimization algorithm, called orthogonal simulated annealing (OSA) algorithm in this work. The OSA algorithm incorporates an orthogonal experiment design (OED) with a simulated annealing based multiobjective algorithm aiming to provide an efficient multiobjective algorithm. OED involves several experiments based on an orthogonal table and a fractional factorial analysis to extract intelligently the best combination of decision vectors making the classical SA to explore search space effectively, to enhance convergence, and to improve quality of solutions in the Pareto set. These benefits have been tested by comparing the performance of OSA with one state-of-the-art multiobjective evolutionary algorithm (NSGA2) and one classical simulated annealing based multiobjective algorithm (CMOSA) considering multiobjective problems of varying degrees of complexity. The obtained Pareto sets by these three algorithms have been tested using standard methods like measure C, hypervolume comparison, etc. Simulation results show that the performance of and CPU time required by these algorithms are problem dependent, and with some problems, the OSA algorithm outperforms the other two algorithms. In particular, the comparison between OSA and CMOSA suggests that around 70 % times OSA outperforms CMOSA and obtains a well diversified set of solutions. In addition, with some problems, OSA captures the Pareto fronts where CMOSA fails. Therefore, the development of OSA is noteworthy, and it provides an additional tool to solve multiobjective optimization problems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700