Numerical simulation of cooling performance of an exhaust gas recirculation (EGR) cooler using nano-fluids
详细信息    查看全文
文摘
A numerical model is developed to predict the performance of an exhaust gas recirculation (EGR) cooler using nanofluid as the coolant. The model accounts for turbulent flow of coolant and hot smokes on an integrated computational domain. Thermal and hydrodynamic behavior of four nanofluids comprising water as the base fluid and SiO2, TiO2, Al2O3 and Cu nanoparticles, were compared over a wide range of Reynolds numbers and various particle concentrations. The accuracy of predictions was verified by experimental data available in the literature. The Al2O3-water nanofluid was found to provide the greatest heat transfer enhancement. Quantitatively, Al2O3-water nanofluid with a volume fraction of 5% and Reynolds number of 5000 improves the heat transfer coefficient by about 16% compared to pure water. However, it was found that the heat transfer enhancement was achieved at the expense of increased pressure drop due to greater viscosity of nanofluids compared to the base fluid. It was also found that the effectiveness of nanofluids in improving the heat transfer rate decreases as the Reynolds number increase.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700