Numerical Modelling of Composite Floor Slabs Subject to Large Deflections
详细信息    查看全文
文摘
This paper is concerned with the ultimate behaviour of composite floor slabs. Steel/concrete composite structures are increasingly common in the UK and worldwide, particularly for multi-storey construction. The popularity of this construction form is mainly due to the excellent efficiency offered in terms of structural behaviour, construction time and material usage all of which are particularly attractive given the ever-increasing demands for improved sustainability in construction. In this context, the engineering research community has focused considerable effort in recent years towards understanding the response of composite structures during extreme events, such as fires. In particular, the contribution made by the floor slab system is of crucial importance as its ability to undergo secondary load-carrying mechanisms (e.g. membrane action) once conventional strength limits have been reached may prevent overall collapse of the structure. Researchers have focused on developing the fundamental understanding of the complex behaviour of floor slabs and also improving the methods of analysis. Building on this work, the current paper describes the development and validation of a finite element model which can simulate the response of floor slab systems until failure, both at ambient and elevated temperature. The model can represent the complexities of the behaviour including the temperature-dependent material and geometric nonlinearities. It is first developed at ambient temperature and validated using a series of experiments on isolated slab elements. The most salient parameters are identified and studied. Thereafter, the model is extended to include the effects of elevated temperature so it can be employed to investigate the behaviour under these conditions. Comparisons with current design procedures are assessed and discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700