Fluid flow and heat transfer of non-Newtonian nanofluid in a microtube considering slip velocity and temperature jump boundary conditions
详细信息    查看全文
文摘
Forced convection of non-Newtonian nanofluid, aqueous solution of carboxymethyl cellulose (CMC)–Aluminum oxide through a microtube is studied numerically. The length and diameter of tube are L=5L=5 mm and D=0.2D=0.2 mm, respectively which means the length is long enough compared to the diameter. The effects of different values of nanoparticles volume fraction, slip coefficient and Reynolds number are investigated on the slip velocity and temperature jump boundary conditions. Moreover the suitable validations are presented to confirm the achieved results accuracy. The results are shown as the dimensionless velocity and temperature profiles; however the profiles of local and averaged Nusselt number are also provided. It is seen that more volume fraction and slip coefficient correspond to higher Nusselt number especially at larger amounts of Re.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700