Load compensation based on frame considering low-order dominant harmonics and distorted power system
详细信息    查看全文
文摘
In this paper, by considering voltage distortion and frequency variation, the control strategy of synchronous reference frame (SRF) for three-phase shunt active power filter has been improved. In the SRF compensation method a conventional low pass filter (CLPF) is used to extract the dc component of the d-axis current (Id). Unfortunately in the presence of low-order harmonics of the load current (second and third ones), the transient response time is increased. If the amplitude of these harmonics are high, the distortions in CLPF output signal are increased, and as a result, the desired compensation cannot be achieved. In this paper to overcome this problem, a novel numerical LPF is designed and implemented based on variable forgetting factor-recursive least squares (VFF-RLS). The advantages of the proposed filter over CLPFs include independence of the load current harmonic components, fast dynamic and high accuracy of the response. Moreover, due to the malfunction of the conventional phase locked loop (PLL) in polluted and variable frequency environment, a second order generation integrator-frequency locked loop (SOGI-FLL) based on fuzzy logic controller (FLC) and wavelet transform (WT) is proposed. Effectiveness of the proposed method is evaluated with both simulations and experimental results in a three-phase power system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700