Mu opioid receptor-dependent and independent components in effects of tramadol
详细信息    查看全文
文摘
Tramadol is thought to induce analgesia via both opioid and non-opioid pathways, although the precise mechanisms remain to be elucidated. In this study, we investigated the roles of the μ-opioid receptor (MOP) in analgesic and rewarding effects of tramadol by using MOP knockout (KO) mice. Tramadol-induced antinociception, assessed by hot-plate and tail-flick tests, was significantly reduced in heterozygous and homozygous MOP-KO mice when compared with that in wild-type mice. Interestingly, however, tramadol retained its ability to induce significant antinociception in homozygous MOP-KO mice. The tramadol-induced antinociception remaining in homozygous MOP-KO mice was not significantly affected by methysergide, a serotonin receptor antagonist, but was partially blocked by yohimbine, an adrenaline α2 receptor antagonist, and both naloxone, a non-selective opioid receptor antagonist, and yohimbine. In addition, antinociceptive effects of an active tramadol metabolite M1 were abolished or remarkably reduced in MOP-KO mice. On the other hand, neither wild-type nor homozygous MOP-KO mice showed significant place preference for tramadol in a conditioned place preference test, although there were slight tendencies toward preference in wild-type mice and avoidance in homozygous MOP-KO mice. These results strongly support the idea suggested in the previous pharmacological studies that MOP and the adrenaline α2 receptor mediate most of the analgesic properties of tramadol.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700