Cell surface display of organophosphorus hydrolase for sensitive spectrophotometric detection of p-nitrophenol substituted organophosphates
详细信息    查看全文
文摘
Organophosphates (OPs) widely exist in ecosystem as toxic substances, for which sensitive and rapid analytical methods are highly requested. In the present work, by using N-terminal of ice nucleation protein (INP) as anchoring motif, a genetically engineered Escherichia coli (E. coli) strain surface displayed mutant organophosphorus hydrolase (OPH) (S5) with improved enzyme activity was successfully constructed. The surface location of INP-OPH fusion was confirmed by SDS-PAGE analysis and enzyme activity assays. The OPH-displayed bacteria facilitate the hydrolysis of p-nitrophenol (PNP) substituted organophosphates to generate PNP, which can be detected spectrometrically at 410 nm. Over 90% of the recombinant protein present on the surface of microbes demonstrated enhanced enzyme activity and long-term stability. The OPH activity of whole cells was 2.16 U/OD600 using paraoxon as its substrate, which is the highest value reported so far. The optimal temperature for OPH activity was around 55 掳C, and suspended cultures retained almost 100% of its activity over a period of one month at room temperature, exhibiting the better stability than free OPH. The recombinant E. coli strain could be employed as a whole-cell biocatalyst for detecting PNP substituted OPs at wider ranges and lower detection limits. Specifically, the linear ranges of the calibration curves were 0.5-150 渭M paraoxon, 1-200 渭M parathion and 2.5-200 渭M methyl parathion, and limits of detection were 0.2 渭M, 0.4 渭M and 1 渭M for paraoxon, parathion and methyl parathion, respectively (S/N = 3). These results indicate that the engineered OPH strain is a promising multifunctional bacterium that could be used for further large-scale industrial and environmental applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700