An empirical force field for the simulation of the vibrational spectroscopy of carbon nanomaterials
详细信息    查看全文
文摘
An empirical force field for carbon based upon the Murrell-Mottram potential is developed for the calculation of the vibrational frequencies of carbon nanomaterials. The potential is reparameterised using data from density functional theory calculations through a Monte-Carlo hessian-matching approach, and when used in conjunction with the empirical bond polarisability model provides an accurate description of the non-resonant Raman spectroscopy of carbon nanotubes and graphene. With the availability of analytical first and second derivatives, the computational cost of evaluating harmonic vibrational frequencies is a fraction of the cost of corresponding quantum chemical calculations, and makes the accurate atomistic vibrational analysis of systems with thousands of atoms possible. Subsequently, the non-resonant Raman spectroscopy of carbon nanotubes and graphene, including the role of defects and carbon nanotube junctions is explored.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700