Complementary control allocation for a Lagrangian seafloor imaging platform
详细信息    查看全文
文摘
The depth controller for a Lagrangian imaging float is detailed, and performance results from simulation and field experiments are used to demonstrate the utility of a model based controller with a complementary control allocation approach. The float is an over actuated system in depth/altitude, which is the only degree of freedom controlled. Vertical control is accomplished using a combination of active buoyancy modulation and a conventional propeller thruster. The proposed depth control algorithm is designed to take advantage of the high authority, high bandwidth inputs available from the thruster, and the low bandwidth trim input available from the buoyancy controller. The float vertical dynamics are modeled as a double integrator in the input force, and empirically derived parameters are used to simulate actuator inputs and system response over pre-recorded bathymetry profiles. Simulation and preliminary experimental results indicate that significant reductions in actuator power can be achieved in field conditions, and that the combination of thruster and buoyancy control provide the altitude tracking performance required for benthic imaging.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700