Low-velocity impact response analysis of composite pressure vessel considering stiffness change due to cylinder stress
详细信息    查看全文
文摘
To accurately analyse the transient response and damage of pressurized vessels subjected to a drop impact or foreign object impact, we must consider the change in stiffness due to pre-stress. The pre-stress condition induces a phenomenon where thin plates with in-plane pre-stress show different stiffness during out-of-plane deflections compared to the original plate without the in-plane pre-stress. Because the cylindrical wall of a pressurized vessel is under in-plane pre-stress induced by the vessel’s internal pressure, we must consider the ‘change in stiffness’ to accurately analyse the impact response and damage. In this study, we investigated the low-velocity impact response of a composite laminated cylinder wall of a pressure vessel with high internal pressure. The shear deformation theory of a doubly curved shell and von Karman’s large deflection theory, as well as a newly proposed strain–displacement relation including initial strain terms to consider the stiffness change induced by cylinder stress due to internal pressure, were used to develop a geometrically nonlinear finite-element program. Numerical results that were calculated for the cylinder stress showed larger contact force and smaller deflection. By comparing strain values, a simple superposition of strain value calculated without considering cylinder stress and initial cylinder strain value showed 10–20% more strain than that accurately calculated with considering the stiffness change due to cylinder stress.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700