Effects of phase constitution and microstructure on energy storage properties of barium strontium titanate ceramics
详细信息    查看全文
文摘
Barium strontium titanate (Ba0.3Sr0.7TiO3, BST) ceramics have been prepared by conventional sintering (CS) and spark plasma sintering (SPS). The effects of phase constitution and microstructure on dielectric properties, electrical breakdown process and energy storage properties of the BST ceramics were investigated. The X-ray diffraction analysis and dielectric properties measurements showed that the cubic and tetragonal phase coexisted in the SPS sample while the CS sample contained only tetragonal phase. Much smaller grain size, lower porosity, fewer defects and dislocation were observed in SPS samples, which greatly improved the electrical breakdown strength of the Ba0.3Sr0.7TiO3 ceramics. The enhanced breakdown strength of the SPS samples resulted in an improved maximum electrical energy storage density of 1.13 J/cm3 which was twice as large as that of the CS sample (0.57 J/cm3). Meanwhile, the energy storage efficiency was improved from 69.3% to 86.8% by using spark plasma sintering.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700