Shape factor for dual-permeability fractured reservoir simulation: Effect of non-uniform flow in 2D fracture network
详细信息    查看全文
文摘
The flow properties of naturally fractured reservoirs are dominated by flow through the fractures. In a previous study we showed that even a well-connected fracture network behaves like a much sparser network when the aperture distribution is broad enough: i.e., most fractures can be eliminated while leaving a sub-network with virtually the same permeability as the original fracture network. In this study, we focus on the influence of eliminating unimportant fractures which carry little flow on the inferred characteristic matrix-block size. We model a two-dimensional fractured reservoir in which the fractures are well-connected. The fractures obey a power-law length distribution, as observed in natural fracture networks. For the aperture distribution, because information from the subsurface is limited, we test a number of cases: log-normal distributions (from narrow to broad), and power-law distributions (from narrow to broad). The matrix blocks in fractured reservoirs are of varying sizes and shapes; we adopt the characteristic radius and the characteristic length to represent the characteristic matrix-block size. We show how the characteristic matrix-block sizes increase from the original fracture network to the dominant sub-network. This suggests that the matrix-block size, or shape factor, used in dual-porosity/dual-permeability waterflood or enhanced oil recovery (EOR) simulations or in homogenization should be based not on the entire fracture population but on the sub-network that carries almost all of the injected fluid (water or EOR agent).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700