Chitosan-based copper nanocomposite accelerates healing in excision wound model in rats
详细信息    查看全文
文摘
Copper possesses efficacy in wound healing which is a complex phenomenon involving various cells, cytokines and growth factors. Copper nanoparticles modulate cells, cytokines and growth factors involved in wound healing in a better way than copper ions. Chitosan has been shown to be beneficial in healing because of its antibacterial, antifungal, biocompatible and biodegradable polymeric nature. In the present study, chitosan-based copper nanocomposite (CCNC) was prepared by mixing chitosan and copper nanoparticles. CCNC was applied topically to evaluate its wound healing potential and to study its effects on some important components of healing process in open excision wound model in adult Wistar rats. Significant increase in wound contraction was observed in the CCNC-treated rats. The up-regulation of vascular endothelial growth factor (VEGF) and transforming growth factor-beta1(TGF-1) by CCNC-treatment revealed its role in facilitating angiogenesis, fibroblast proliferation and collagen deposition. The tumor necrosis factor- (TNF-) and interleukin-10 (IL-10) were significantly decreased and increased, respectively, in CCNC-treated rats. Histological evaluation showed more fibroblast proliferation, collagen deposition and intact re-epithelialization in CCNC-treated rats. Immunohistochemistry of CD31 revealed marked increase in angiogenesis. Thus, we concluded that chitosan-based copper nanocomposite efficiently enhanced cutaneous wound healing by modulation of various cells, cytokines and growth factors during different phases of healing process.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700