Synthesis and electrochemical characterization of [Ru(NCCH3)6]2+, tris(acetonitrile) tris(pyrazolyl)borate, and tris(acetonitrile) tris(pyrazolyl)methane ruthenium(II) complexes
详细信息    查看全文
文摘
Tris(acetonitrile) tris(pyrazolyl)borato- and tris(pyrazolyl)methano ruthenium(II) complexes would make good synthons in ruthenium chemistry for synthesis of catalysts and DNA binding drugs. However, these complexes are not widely used as starting materials due to the long reaction times and multiple synthetic steps required or the lack of their successful synthesis. We have developed a new synthesis for the ruthenium(II) acetonitrile complex [Ru(NCCH3)6]2+ with noncoordinating BF4? or OTf (OTf = trifluoromethanesulfonate) counterions. Using this [Ru(NCCH3)6]2+ complex, the previously reported tris(acetonitrile) tris(pyrazolyl)borato ruthenium(II) complexes [TpRRu(NCCH3)3]+ (TpR = tris(pyrazolyl)borate; R = H, Me) and the unreported tris(acetonitrile) tris(pyrazolyl)borato ruthenium(II) complex (R = Ph) have been synthesized using an improved synthetic pathway that reduces the number of required steps by up to six and the average synthesis times by up to 45 h. Novel tris(acetonitrile) tris(pyrazolyl)methano ruthenium(II) complexes of the formula [TpmRRu(NCCH3)3]2+ (TpmR = tris(pyrazolyl)methane; R = Me, Ph) have also been synthesized in one step in 12 h using this method. Cyclic voltammetry studies of the synthesized complexes show that Ru2+/3+ redox potentials generally increase with increasing steric bulk of the TpR or TpmR ligand. The ability to sterically tune Ru2+/3+ redox potentials may be used to promote catalysis development and in the development of ruthenium-based drugs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700