Neural mechanisms for learning actions in context
详细信息    查看全文
文摘
The transition from actions that require effortful attention to those that are exercised automatically reflects the progression of learning. Full automaticity marks the performance of the expert. Research on changes in brain activity from novice to skilled performance has been consistent with this behavioral characterization, showing that a highly practiced skill often requires less brain activation than before practice. Moreover, the decrease in brain activity with practice is most pronounced in the general or executive control processes mediated by frontal lobe networks. Consistent with these human cognitive neuroscience findings, animal neurophysiological evidence suggests that two elementary learning systems support different stages of skill acquisition. One system supports rapid and focused acquisition of new skills in relation to threats and violations of expectancies. The other involves a gradual process of updating a configural model of the environmental context. We collected dense array electroencephalography as participants performed an arbitrary associative (“code learning”) task. We predicted that frontal lobe activity would decrease, whereas posterior cortical activity would increase, as the person gains the knowledge required for appropriate action. Both predictions were confirmed. In addition, we found that learning resulted in an unexpected increase in activity in the medial frontal lobe (the medial frontal negativity or MFN). Although preliminary, these findings suggest that the specific mechanisms of learning in animal neurophysiology studies may prove informative for understanding the neural basis of human learning and executive cognitive control.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700