NEMO is a key component of NF-κB?and IRF-3–dependent TLR3-mediated immunity to herpes simplex virus
详细信息    查看全文
文摘

Background

Children with germline mutations in Toll-like receptor 3 (TLR3), UNC93B1, TNF receptor–associated factor 3,?and signal transducer and activator of transcription 1 are prone to herpes simplex virus-1 encephalitis, owing to impaired TLR3-triggered, UNC-93B-dependent, IFN-α/β, and/or IFN-λ-mediated signal transducer and activator of transcription 1-dependent immunity.

Objective

We explore here the molecular basis of the pathogenesis of herpes simplex encephalitis in a child with a hypomorphic mutation in nuclear factor-κB (NF-κB) essential modulator, which encodes the regulatory subunit of the inhibitor of the Iκβ kinase complex.

Methods

The TLR3 signaling pathway was investigated in the patient’s fibroblasts by analyses of IFN-β, IFN-λ, and IL-6 mRNA and protein levels, by quantitative PCR and ELISA, respectively, upon TLR3 stimulation (TLR3 agonists or TLR3-dependent viruses). NF-κB activation was assessed by electrophoretic mobility shift assay and interferon regulatory factor 3 dimerization on native gels after stimulation with a TLR3 agonist.

Results

The patient’s fibroblasts displayed impaired responses to TLR3 stimulation in terms of IFN-β, IFN-λ, and?IL-6 production, owing to impaired activation of both NF-κB and IRF-3. Moreover, vesicular stomatitis virus, a potent IFN-inducer in human fibroblasts, and herpes simplex?virus-1, induced only low levels of IFN-β and IFN-λ in the patient’s fibroblasts, resulting in enhanced viral replication and cell death, as reported for UNC-93B-deficient fibroblasts.

Conclusion

Herpes simplex encephalitis may occur in patients?carrying NF-κB essential modulator mutations, due to?the impairment of NF-κB- and interferon regulatory factor 3-dependent-TLR3-mediated antiviral IFN production.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700