Propagation properties of partially coherent high-order cylindrical vector beams through a turbulent atmosphere
详细信息    查看全文
文摘
On the basis of the extended Huygens–Fresnel integral formula and the unified theory of coherence and polarization of partially coherent beams, analytical formulae of the elements of the beam coherence-polarization (BCP) matrix for a partially coherent high-order cylindrical vector (HCV) beam propagating through a turbulent atmosphere are derived under a high topological charge condition. The propagation of a radially polarized partially coherent beam through a turbulent atmosphere can be treated as a special case of this general result. Numerical results indicate that the intensity distribution and the polarization evolution of the beam are dependent on the propagation distance, structure constant, transverse coherence length and topological charge. It was also found that initial intensity distribution with a hollow shape gradually changes into Gaussian distribution, and the polarization structure will be slowly degenerated during propagation through a turbulent atmosphere. Interestingly, with increase of the topological charge, a partially coherent HCV beam can effectively mitigate the turbulence effect on its scintillation. These results may find applications in connection with free-space optical communication (FSO) and remote sensing.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700