A finite element based data analytics approach for modeling turning process of Inconel 718 alloys
详细信息    查看全文
文摘
Turning is a primary metal cutting process deployed extensively for producing components to required shape and dimensions. A commonly used material is Inconel 718, which exhibits an inferior economic feasibility in terms of turning due to its poor machinability characteristics. A combined finite element based data analytics model is introduced in this work. Finite element modeling was used to predict the cutting force while Genetic Programming was used to obtain the mathematical relation between the process variables and the cutting force. The weighted parameter analysis was conducted on the mathematical model which revealed that depth of cut and cutting angle exerts significant influence on the cutting force. As turning process is generally specified by a given depth of cut which dictates the material removal rate, optimization of tool cutting angle can result in enhanced power savings. It is anticipated that the findings obtained from this study can result in greater power savings in turning process of hard-to-machine materials which can lead to a sustainable manufacturing process.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700