Exact Voronoi diagram of smooth convex pseudo-circles: General predicates, and implementation for ellipses
详细信息    查看全文
文摘
We examine the problem of computing exactly the Voronoi diagram (via the dual Delaunay graph) of a set of, possibly intersecting, smooth convex pseudo-circles in the Euclidean plane, given in parametric form. Pseudo-circles are (convex) sites, every pair of which has at most two intersecting points. The Voronoi diagram is constructed incrementally. Our first contribution is to propose robust and efficient algorithms, under the exact computation paradigm, for all required predicates, thus generalizing earlier algorithms for non-intersecting ellipses. Second, we focus on InCircle, which is the hardest predicate, and express it by a simple sparse polynomial system, which allows for an efficient implementation by means of successive Sylvester resultants and a new factorization lemma. The third contribution is our cgal-based c++ software for the case of possibly intersecting ellipses, which is the first exact implementation for the problem. Our code spends about a minute to construct the Voronoi diagram of 200 ellipses, when few degeneracies occur. It is faster than the cgal segment Voronoi diagram, when ellipses are approximated by k-gons for , and a state-of-the-art implementation of the Voronoi diagram of points, when each ellipse is approximated by more than 1250 points.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700