Synthesis and electrochemical performance of α-Fe2O3@carbon aerogel composite as an anode material for Li-ion batteries
详细信息    查看全文
文摘
A α-Fe2O3@carbon aerogel (CA) composite material has been successfully synthesized via a simple hydrothermal method in water solution. The microstructure, morphologies, α-Fe2O3 loading content in α-Fe2O3@CA, porous nanostructure and electrochemical properties of these materials are investigated by X-ray diffraction, scanning electron microscopy, thermal gravimetric analysis, N2 adsorption-desorption isotherms, constant current charge/discharge tests and cyclic voltammetry tests. The results show that α-Fe2O3 is uniformly dispersed on CA with a rugby-like morphology, and the α-Fe2O3 active material loading content in α-Fe2O3@CA composite is up to 95.72%. The α-Fe2O3@CA revealed a high reversible capacity of 581.9 mAh g−1 and stable cyclic retention at 50th cycle. The improvement of reversible capacity and cyclic performance of the α-Fe2O3@CA composite is attributed to the unique structure of CA, with high electronic conductivity and three-dimensional porous structures among the interconnected α-Fe2O3@CA composite, which could not only effectively load the α-Fe2O3 active material, but also could prevent the aggregation of α-Fe2O3 nanoparticles and facilitate the transport of electrons and shorten the distance for Li+ diffusion. The encouraging experimental results suggest that the novel α-Fe2O3@CA composite have great potential for use as an anode material for lithium rechargeable cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700