Numerical Investigation of Aluminum Foam Shield Based on Fractal Theory and Node-separation FEM
详细信息    查看全文
文摘
Fractal feature of aluminum foam (Al-foam) section is analyzed with digital image processing technique, and fractal dimension of Al-foam is evaluated with logarithmic linear regression method. Sierpinski carpet can be used to model Al-foam section. Al-foam with different fractal dimensions and relative density can be obtained by adjusting iteration times and division parameters. Sierpinski sponge is extended from Sierpinski carpet and used to model 3D Al-foam bumper. Node-separation Lagrangian finite element method (FEM) is introduced to simulate the hypervelocity impact (HVI) process. The modeling and simulation method is calibrated by the comparison of numerical results and experimental data. Ballistic limit curves of Al-foam and aluminum alloy bumper with the same areal density are obtained by simulations. The results show that the protection performance of Al-foam bumper is much better than aluminum alloy bumper. Al-foam is well suited for spacecraft shield application.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700