Differential confocal technology based on radial birefringent pupil filtering principle
详细信息    查看全文
文摘
In order to improve the spatial resolution of a confocal system, a radial birefringent pupil filter (RBPF) is introduced into a differential confocal system. RBPF consists of two polarizers with a birefringent element between them, and its pupil function is deduced from Jones matrix. The thickness and curvature radius of RBPF are optimized independently, using the first zero coordinate ratio. The pupil function is modulated by RBPF to enhance the half-width of the response function, and lateral resolution is improved when response curve is changed with the position of RBPF as well as the polarization; then axial super-resolution of the system can be guaranteed using differential confocal detection mechanism. In comparison with conventional pupil filtering technology, RBPF features high lateral resolution and can be easily produced; moreover, it also has a simple structure. Together with its low cost, RBPF provides a new way for the improvement of super-resolution of confocal system. It is indicated from theoretical analysis and preliminary experiments that the lateral resolution can be significantly improved and the measurement error is reduced by 76 nm when measuring a standard grating of period 3 ¦Ìm; the axial resolution up to 3 nm has been achieved using the optimized pupil filter. In addition to its application for measurement of a small irregular surface in a limited space, the whole differential confocal system proposed can be fitted onto a coordinate measuring machine for non-contact measurement of dimensions and surface roughness.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700